Conditions for Describing Triplet States in Reduced Density Matrix Functional Theory.
نویسندگان
چکیده
We consider necessary conditions for the one-body reduced density matrix (1RDM) to correspond to a triplet wave function of a two-electron system. The conditions concern the occupation numbers and are different for the high spin projections, Sz = ±1, and the Sz = 0 projection. Hence, they can be used to test if an approximate 1RDM functional yields the same energies for both projections. We employ these conditions in reduced density matrix functional theory calculations for the triplet excitations of two-electron systems. In addition, we propose that these conditions can be used in the calculation of triplet states of systems with more than two electrons by restricting the active space. We assess this procedure in calculations for a few atomic and molecular systems. We show that the quality of the optimal 1RDMs improves by applying the conditions in all the cases we studied.
منابع مشابه
1 5 M ar 2 01 6 Conditions for describing triplet states in reduced density matrix functional theory
Iris Theophilou, 2 Nektarios N. Lathiotakis, 4 and Nicole Helbig Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany Peter-Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany∗ Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملThe spin–flip approach within time-dependent density functional theory: Theory and applications to diradicals
An extension of density functional theory to situations with significant nondynamical correlation is presented. The method is based on the spin–flip ~SF! approach which is capable of describing multireference wave functions within a single reference formalism as spin–flipping, e.g., a→b, excitations from a high-spin (M s51) triplet reference state. An implementation of the spin–flip approach wi...
متن کاملTiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study
We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2016